SOLID STATE PHYSICS III Homework 3 Dec. 4th, 2024

e This is an individual homework. Each submission must have been worked out and written up
by the submitting student.

e This homework is an open-book assessment. Students are permitted to use lecture slides, notes,
exercises, and any other provided resource materials to solve the problems.

e Some problems may require students to generate plots. For this, students may utilize any offline
or online plotting tools of their choice.

e Each homework set contains questions worth a total of 20 points. You may gain extra point(s)
by solving the optional questions. But the maximum you can get in one homework is 20.

o A digital copy of the homework solutions, whether handwritten or typed, must be submitted
through the Moodle assignment section by Wednesday, December 11th, 2024, at 09:59 PM.

e The homework will be assessed within a reasonable timeframe, and students may discuss their
assessments during the exercise sessions.

Coherence length of Cooper pairs

The purpose of this exercise is to determine the coherence length /. of the Cooper pairs. To this end,
we use the expansion of the BCS state into states with a fixed number of particles (see course):

N/2
|®pcs) = Z PN, with [Pn) =C (Z gkCLTCT—m) 0) (1)
k

N=0,2,4-
where C = ﬁ (Hpup), Ik = &, ui = %(1—%—%), vi = %(1—%’;), Er = & + A? and
k2
e = om — €F -
(a) Show that @y can be decomposed into a product of two-particle wave functions
(rioy,--- ,ryoN|®N) ~ A- (1/1(7’101,T202)¢(7‘3037T4U4) . '1/)(7‘N—10N—177’1\/@\/))7 (2)
where

e (ro,r'c’) is the two-particle wave function given by ¥(ro,r'c’) = p(r — r")ny(o)n, (o),
® 1,/(0) = 50 is the spin wave function,

e ¢(r) is the spatial wave function defined by

1 ik-r
p(r) = 7o zk:gke k (3)
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e A is the antisymmetrisation operator, defined by its action on a function f(ri01, -+ ,"NON)
1
A om0z, TvoN) = 1 D s (o) Tp(1)s Tp2)Tp(2) T Tp(n))s (4)
" peSN

e Sy is the set of permutations with N terms,

e and finally s, = (—1)? = %1 is the signature of the permutation p.

Remember that

61,2, ., ON) = \/% Y Clepm) ® 16pe) © - @ |dp(m)) (5)
" pESN
= 01;1022 e C:;N |0)
where ( = —1 for fermions and { = +1 for bosons. For example, in real-space representation,
101, rnon) = Ul (rioy) - Ul (ryon)|0)

where W is the field operator

—ik-r T

1
Ui(ro)=cl, = — Ze Cho
VQ 4

such that ) )
rolke’) = —e* 78, = —e* Ty, (o 6
(rolka’) = = T () )
[3 points]
Solution: We have
N/2
|PN) = O(ngciﬁciki) 0)
k
= C Z (gkl e 'gk’N/2) C/t:ﬁctkw o CLN/2TC]:’€N/2¢|O>
kika,....kNy2
= C > (g Gknp) ks t—F1 Lo kg 1 —Ey2 L)
kika,....kny2

and therefore:

(rio1,1209,...TNoN|PN) =C Z (9k1~~9kN/2)Z$p
kik2,...kn/2 P

X(Pp, 0p [k1 1) (Ppy0ps| — k1 L)oo (o opy |kN/2 1) (rpnopn| — kny2 )

where p; = p(i). Here we used the fact that

1
(1, onlers - on) = 15 > Pl q) e (Gpv) [ Pa(n)

" p.g€SN
1
=¥ Z §p+q<¢p.q,1(1)|<p1> ..... (Bpg-1 ()| on)
" p.g€SN
= > brylen) - (e low)-
reSn



SOLID STATE PHYSICS TIT Homework 3 Dec. 4th, 2024

Using the formula (ro|kc’) = 644 \}ﬁeik"' = 1y (U)%e“'“'7 we obtain
<’I“10‘1,’I'20‘2,...’I“N0’N|(I)N> = C Z (gkl"'gkzv/z)zsp
kik2,....kn/2 P

so that

<7'101,7‘202, .-

= <’I"10'1,T‘20'2, e

L ik, L ik,
X —=e" VT (o, ) —=e T2 (o
Q M (0p, ) Q 14(0p, )

1 .
tkN/2 Tpn
X e "N/ 177T(0pN_1)

VQ

¢TI ()

5~

.’I’NO'N|(I)N> = CZSP
P

1 ik1-(rp, —7
XL S gy e 3, 1(0,)
k1

1 ik (r —
x Q Z Ik, € ko (roy rm)nT(Ups)ni(Um)
k2

1 ik nr /o _
Xﬁ Z gk:N/2el MG TPN)nT(Upwfl)m,(UpN)
kny2

C
= QN4 Z SpU(Tpy Opys Tpy Oy )U(Tpy Oy s Ty Oy ) - -V (Tpy 1 Oy 1, Tpn Opy)
P

’I"NO'N|(I)N> X .A'(’(/)(7"10’1,7’20’2)1/)(7‘30’3,1”40’4)...1/}(1”]\/_10'1\/_1,’!’]\[0']\[))

(b) Show that it is possible to express Eq. (2) in terms of antisymmetric wave functions:

(rioi, - ,ryon|Pn) ~ A- <¢a(1“101,7“202)1%(7‘3037"“404) . 'wa(TN—NN—h?“NUN))

where the antisymmetric two-particle wave function 1, is defined by

1
Yalreyr's’) = = (m(@m o) = m(@m(e")) elr —+')
2
[2 points]
Solution: We can antisymmetrise the two-particle wave function. Indeed, using
A-f( rioirjog, ) =—A- f(--r rjog 00,00 )

we have

1

A'f("'aTiUi7rjoj7"') — §(~A'f("'aTiUi7Tj0j7"')_A'f("'7rj0j7riai7"'))
1
= '§(f( (Ti03, 705, ) = (o, mio, - ))
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Hence, for particles 1 and 2,
(rio1, - ,ryoN|PN) x A- <¢(T101,7‘202)¢(T’303,7’404)"')
1
= §A- (w(TlUly7'2(72)¢(7“30377'4J4)"'Q/J(T'NflUNflﬂ'NUN)

— (1202, 7101)Y(r303,7404) - - - V(P N_10N—1, "“NUN))

LA- (¢(T10’17T202) — Y(re09,T101)
V2 V2

x(r3o3,1404) - - '¢(TN—1UN—17T‘N0N)>
By performing the same operation for the pairs of particles (3,4), (5,6),---, (N —1, N), we obtain
(rio1,--- ,ryon|®PN) o< A- (7%(7“101,7‘202)¢a(7'3037"“404) . 'wa(TN—laN—l,V’NUN))

with the antisymmetrised two-particle wave function

Y(ro,r'c’) —(r'e’,ro)

V2

Yo (ro,r’o’) =

1 I ! ! !
= 7 o(r —rn(o)n (o) — p(r" —r)nr(a")ny (o)

=p(r—r’)

= J5elr =) (meIm ()~ n(@m(a)

(¢) The coherence length ¢, of the pair is then calculated from the average radius p of the wave
function v

2oy WIEW) [ (RRZ(R)ER

‘ T W) Jer(R)p(R)®R (7)

1. Show that p? can be written as:

2 _ JK(Vigr)® s)
| &3kgi

[3 points]
Hint: when you integrate over a sphere of radius |k| — oo, you may need to approximate
~ A2

Ey = & (1 + @)
Solution: Switching to the continuous limit for k:

/ ¢*(R)R*¢(R)d*R = @ny / d*R / kg Re* 1. / d*pgpRe” PR

= G / d’R / kg Vie™ T / d’pgp Ve P T
However, Vi(f(k)g(k)) = f(k)Vig(k) + g(k)Vir f(k). Therefore we have:

/ kg Ve B = / PPEV i (gre™ ) — / P h(Vigr)e™
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We then use Gauss’s theorem (the divergence theorem) on the first term
/dSka (gkeikR /ngke Re,

We need to integrate over a sphere of radius |k| — oo. Yet, g — 0 when & > &, +wp. More
2
precisely, recall the expression of gi, up and vy (recall that & = % — er). You see that for

very large k, Ey ~ & —|— 2. By expanding, one gets that
v mA
= — ~ — 9
9=~ g3 (9)

Since the surface dS ~ 4mk?, we are essentially integrating e’* B on the sphere, which gives

Z€ero.
‘We thus have

/ kY (gre™®) =0
and

/(p*(R)R2<p(R)d3R = R/dgkgkRe““'R-/d3pnge_ipR

(2m)¢
0 - o
= G [ OB [ ERTia)e T [ #9000
9] .
k/d?’p(ngk) . (Vpgp)/e’(kfp)‘Rng

=(2m)%6k,p

k(Vige)®

For the denominator,

Q 4
/‘P*(R)@(R)d?’R =~ ek /d3k/d3pgkgp/d3Rez(k—p)~R

d3

d*pgrgpé(k — p)

B &? kgk

I
?
\

)

Therefore, finally we got the required expression.

e \2  pen dgi | 2
Jo 7 déi (G
p2 = ( dk >€k7§uD0g]%d§: (df ) ) (10)

. Then write it as

[3 points]
Hint: For Cooper pairs in the presence of a a Fermi sea, when €¢; < €p, gx can be seen as
constant and its gradient is zero.
Solution: Again, let’s start from the numerator, and use the fact that g behaves as
e We consider a set of Cooper pairs in the presence of a a Fermi sea. Therefore, for ¢ < €p,
gk is constant and its gradient it zero.
e Vigr only depends on |k|, so that we can switch to spherical coordinates and integrate
over the angular variables.
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Then we have
[ewmamar = 2 ’“ i (12 >2
2%% /: dk (‘%)2

st () e ()

1R

1

For the denominator,

* K Q ko
[e@®emar = 5 [

2T »

Q dk “p

— k2 <> / 2d
o2 'F déy emoJo 9 A€k

3. Calculate the integral, then using the weak-coupling approximation (A < wp) as well as

1R

&, >
—_ = h’UF (11)
< dk €420
infer that 5
VR
[3 points]

Solution: Remember that

_ Ev—8 _ |Ex—& [Ex—& _ Ex—& :l(E e
9k Ep + & Er+ &\ Bx — & \/ﬂ A Lk k

so we have
dgp\> 1 [ d 2
(i) = =(ge-)
1/ d 2
- e (i (Verar-e))
&, &
A2 G+A @+ A
and

wp 2 wp
/0 d&y, <ZZ:> = é {ﬁk + (& — A arctan %k) —20/& + A2]

0

1 wp
Az <2wD - AarctanZ +2¢/w? + A2 + 2A> .
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-1
But A = 2wpe¥9r (see course), so that in the weak coupling limit A < wp = /w? + A? =~

wp and
Thus we have, with (fT)
133

Similarly, we have

/ S (Rp(R)PR ~
Q

12

Q

Q

Q

2
But A < wp = 1—|—<wAD> ~1+A?/(2w

Finally,

62

c

o2 F

QO k2
272 h’UF

2 2
%WFAQ {kaQ + gf/‘? - g(AQ + f/%)\/ A? 4 51%]

e
27T2 hUFAQ

dk /“D 9
- 95, d&
dfk)gk_o 0 RESK

P (W—fkfd
VTSR g,

0

wpD
r 2 2 _ /I A2 2
on? ﬁ’UFAQ /0 (A + 251@ ka A +€k> dfk

wp

0

2 2
§(A2 +wh) /A2 +w? + 3A3)

2), and we get

2
(wDA2 + gw% —

Qk2.A
* 3 F
[ @erar= E
[ (RR2(R)PR v
[ e*(R)p(R)d*R A2

Usually, £, ~ 10® A, which should be compared with the lattice constant ~1A (~ distance between
the centers of mass of the pairs). Thereby, the spatial extent of the Cooper pairs is considerably
larger than the distance between their centers of mass, and we cannot assume that they are

independent.

Here are some useful integrals:

1
/ P dx

x
——d
/ VEta

1 x
= — arctan —
a a

=Vz?+a?

z? T
et ﬁdaﬂ = x — agarctan —
e+ a a

1
et /x\/ 2?2+ a?dx = g(x2 +a®)Vx? + a?
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Properties of Hubbard Hamiltonian

Consider the one-dimensional Hubbard model, whose Hamiltonian is given by:
H=-t Z (cjgcjg + c;fgcig) + Uznmnu,
(irg)0 i

where c;-ra and c;, are the creation and annihilation operators for an electron at site ¢ with spin o,

Nig = cjocw is the number operator for electrons at site ¢ with spin o, ¢ is the hopping parameter,
U is the on-site interaction energy, and (i, j) denotes nearest-neighbor sites.

(a) Prove that the total number operator
N = Zni, where n; = ni + nyy,
i
commutes with the Hamiltonian, i.e., show that:
[N, H] = 0.

[2 points]
Solution: To show that [N ,H] = 0, we compute the commutator explicitly. The total
particle number operator is given by:

Z”a = Z ( et %Cn)

and the Hamiltonian H has two terms: the hopping term and the interaction term:

H=—t Z (cwcjo + c cw) + UZMT”“'
i

(irg

The hopping term is:

Hyop = —t Z (cwcja + c cm> .

(i,.9),0

The commutator of N with Hyop is:

[NaHhop] —t Z ( ) chja [N7cjgc70']) .
(i,3),0

Using the commutator relations:

[N7 Cio’] = —Cio, [N7 cza’] - CTO"
we find:
[N, clpciol = lycio = clycio = 0,

)’ o

and similarly:
[N, ¢l o] = 0.

) Jg'

Thus: R
[N, Hyop] =0

Hint =U Z YT A
i

The interaction term is:
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The commutator of N with Hyy is:

[N, Hint] = UZ[N, nzTnu]

Since N commutes with ni and n;), we have:
[]\7, niniy] = 0.
Thus: R
[N, Hint] = 0.
Since [N, Hyop) = 0 and [N, Hing] = 0, we conclude:
[N, H] = 0.

This shows that the total particle number N is conserved under the Hamiltonian H.

N is a conserved quantity. Write the local conservation equation for particle number. Using
the Heisenberg equation of motion, find the expression for the corresponding current? 1
point]

Solution:

The local conservation equation for particle number is:

dnz ZJ,L] _ ,

where J;; is the current from site j to site <.

Using the Heisenberg equation of motion:

d’l’Li )
@~ plhmal

we compute the commutator [H,n;] with the Hamiltonian:
H=—t Z (c;racjg + c}acw) + UZ”¢T”¢¢~
(i,4),0 @

The commutator [H,n;] receives contributions only from the hopping term:

Hyop = —t Z (CIUC]'U + c;a.cia'> .

(i.3),0

Expand the commutator:

[Hhop, ni] = —t Z (cwcjg,nl + [cj-gcia,ni]).

(i,3),0
Forn, =) _c wcw, the commutator with the hopping terms evaluates to:
[czgcjo') ni] = _ngcjay [C;gcig7nl} = C;gcza

Thus:

[Hhopanz —Zt Z (C Cigc — chja) .

(i,3),0
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Substitute this result into the Heisenberg equation of motion:

dni
P t Z (c;[-acw - cjacjg> .
(63,0

The current J;; is then:
Jij = th (C;FUCJ'O- - C:lja_ci0'> .
g

(¢) Tt is easy to see that the Hamiltonian is invariant under the transformations:

‘ —if . T 0
Cjo = € Cjg, Cj, €7 Ch,

Such a symmetry is called a global U(1) symmetry. Given the unitary operator:

U= eiGN

compute the transformed operators
UcjoUT and Ucl,UT,
i0 .1

and show that they turn out to be e~%¢;, and e Cio

Hint: You may use the Baker—-Campbell-Hausdorff formula.

respectively. [3 points]

Solution:
Using the Baker-Campbell-Hausdorff formula:

UcjoUT = eNe¢j e 0N,

we expand the transformation as:

f = 4 BN W0 5 17
UCJJU _Cja""‘[ 7Cj0}+ 21 [ ’[ ?CJ'UH""'"

From the commutator relations, we know:

[N,cjg] = —Cjo-
Substituting this into the expansion:
[N, [N, ¢joll = [N, —cjo] = =[N, ¢jo] = ¢jo
The pattern alternates as:
[N,[N,[N,¢jo]l] = —¢jo, and so on.

Thus, the series sums to:

C—i0)? (o)
UCJ‘UUT:CJ‘U <1—Z€—|— ST 3l 4+ ).

The expression in parentheses is the Taylor expansion of e~*. Therefore:

ch(,UT =e Y¢jgo.

10
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. i
Similarly, for ¢;,,

we compute:
Uch Ut = Nt =N
jo jo ’

and expand:

A ) 2 ~ ol
Ucl, Ut =l +if[N,cl,] + (i) [N, [N, ef ]+

' jo

Using the commutator:

the series sums to:

TR

.92 .93
Uc;[-UUT:c;U(l—i—iH—I—(Z) () —1—)

The expression in parentheses is the Taylor expansion of €*?. Therefore:

UC;UUT = el

jo*

(d) (Optional) We have shown in the lecture that the effective Hamiltonian for the Hubbard
model at half-filling can be written as

t2
v o ) . T )
U Cio'Cjo' Nj,oMj,—oCj 51 Ciyo
i(4),0'c”

(See Mila’s lecture notes, Section 2.3).
In the lecture, we performed explicit calculations for the case

/ 1"

o =0"=o0.

Consider the other three cases, i.e.

o =o' = —0,
2 !/
o'=—0'=0
and
o' =—0' = —o,

and simplify the effective Hamiltonian (show detailed calculations). [3 points]

Solution:

The solution is straightforward once you have determined that
e el = (1= .
Cj,oNj,0Cj & ( o),
Mo +1j,—g =1

and

Cj,oNj,o = Cj,o-

11



