
Solid state physics III Homework 3 Dec. 4th, 2024

• This is an individual homework. Each submission must have been worked out and written up
by the submitting student.

• This homework is an open-book assessment. Students are permitted to use lecture slides, notes,
exercises, and any other provided resource materials to solve the problems.

• Some problems may require students to generate plots. For this, students may utilize any offline
or online plotting tools of their choice.

• Each homework set contains questions worth a total of 20 points. You may gain extra point(s)
by solving the optional questions. But the maximum you can get in one homework is 20.

• A digital copy of the homework solutions, whether handwritten or typed, must be submitted
through the Moodle assignment section by Wednesday, December 11th, 2024, at 09:59 PM.

• The homework will be assessed within a reasonable timeframe, and students may discuss their
assessments during the exercise sessions.

Coherence length of Cooper pairs

The purpose of this exercise is to determine the coherence length ℓc of the Cooper pairs. To this end,
we use the expansion of the BCS state into states with a fixed number of particles (see course):

|ΦBCS⟩ =
∑

N=0,2,4···
|ΦN ⟩, with |ΦN ⟩ = C

(∑
k

gkc
†
k↑c

†
−k↓

)N/2

|0⟩ (1)

where C = 1
(N/2)!

(∏
p up

)
, gk = vk

uk
, u2k = 1

2

(
1 + ξk

Ek

)
, v2k = 1

2

(
1− ξk

Ek

)
, Ek =

√
ξ2k +∆2 and

ξk = k2

2m − ϵF .

(a) Show that ΦN can be decomposed into a product of two-particle wave functions

⟨r1σ1, · · · , rNσN |ΦN ⟩ ∼ A ·
(
ψ(r1σ1, r2σ2)ψ(r3σ3, r4σ4) · · ·ψ(rN−1σN−1, rNσN )

)
, (2)

where

• ψ(rσ, r′σ′) is the two-particle wave function given by ψ(rσ, r′σ′) = φ(r − r′)η↑(σ)η↓(σ
′),

• ησ′(σ) = δσ,σ′ is the spin wave function,

• φ(r) is the spatial wave function defined by

φ(r) =
1√
Ω

∑
k

gke
ik·r, (3)
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• A is the antisymmetrisation operator, defined by its action on a function f(r1σ1, · · · , rNσN )

A · f(r1σ1, r2σ2, · · · , rNσN ) =
1

N !

∑
p∈SN

spf(rp(1)σp(1), rp(2)σp(2), · · · , rp(N)σp(N)), (4)

• SN is the set of permutations with N terms,

• and finally sp = (−1)p = ±1 is the signature of the permutation p.

Remember that

|ϕ1, ϕ2, . . . , ϕN ⟩ ≡ 1√
N !

∑
p∈SN

ζp|ϕp(1)⟩ ⊗ |ϕp(2)⟩ ⊗ . . .⊗ |ϕp(n)⟩ (5)

= c†ϕ1
c†ϕ2

. . . c†ϕN
|0⟩

where ζ = −1 for fermions and ζ = +1 for bosons. For example, in real-space representation,

|r1σ1, · · · , rNσN ⟩ = Ψ†(r1σ1) · · ·Ψ†(rNσN )|0⟩

where Ψ is the field operator

Ψ†(rσ) ≡ c†rσ =
1√
Ω

∑
k

e−ik·rc†kσ

such that

⟨rσ|kσ′⟩ = 1√
Ω
eik·rδσσ′ =

1√
Ω
eik·rησ(σ

′) (6)

[3 points]

Solution: We have

|ΦN ⟩ = C
(∑

k

gkc
†
k↑c

†
−k↓

)N/2

|0⟩

= C
∑

k1,k2,...,kN/2

(
gk1

. . . gkN/2

)
c†k1↑c

†
−k1↓ · · · c

†
kN/2↑c

†
−kN/2↓|0⟩

= C
∑

k1,k2,...,kN/2

(
gk1

. . . gkN/2

)
|k1 ↑,−k1 ↓, . . . ,kN/2 ↑,−kN/2 ↓⟩

and therefore:

⟨r1σ1, r2σ2, . . . rNσN |ΦN ⟩ = C
∑

k1,k2,...,kN/2

(
gk1 . . . gkN/2

)∑
p

sp

×⟨rp1
σp1

|k1 ↑⟩ ⟨rp2
σp2

| − k1 ↓⟩ . . . ⟨rpN−1
σpN−1

|kN/2 ↑⟩ ⟨rpN
σpN

| − kN/2 ↓⟩

where pi ≡ p(i). Here we used the fact that

⟨ϕ1, . . . , ϕN |φ1, . . . , φN ⟩ = 1

N !

∑
p,q∈SN

ζp+q⟨ϕp(1)|φq(1)⟩ · · · · · ⟨ϕp(N)|φq(N)⟩

=
1

N !

∑
p,q∈SN

ζp+q⟨ϕp·q−1(1)|φ1⟩ · · · · · ⟨ϕp·q−1(N)|φN ⟩

=
∑
r∈SN

ζr⟨ϕr(1)|φ1⟩ · · · · · ⟨ϕr(N)|φN ⟩.
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Using the formula ⟨rσ|kσ′⟩ = δσσ′
1√
Ω
eik·r = ησ′(σ) 1√

Ω
eik·r, we obtain

⟨r1σ1, r2σ2, . . . rNσN |ΦN ⟩ = C
∑

k1,k2,...,kN/2

(
gk1

. . . gkN/2

)∑
p

sp

× 1√
Ω
eik1·rp1 η↑(σp1

)
1√
Ω
e−ik1·rp2 η↓(σp2

)

...

× 1√
Ω
eikN/2·rpN−1 η↑(σpN−1

)
1√
Ω
e−ikN/2·rpN−1 η↓(σpN

)

so that

⟨r1σ1, r2σ2, . . . rNσN |ΦN ⟩ = C
∑
p

sp

× 1

Ω

∑
k1

gk1e
ik1·(rp1

−rp2
)η↑(σp1)η↓(σp2)

× 1

Ω

∑
k2

gk2
eik2·(rp3−rp4 )η↑(σp3

)η↓(σp4
)

...

× 1

Ω

∑
kN/2

gkN/2
eikN/2·(rpN−1

−rpN
)η↑(σpN−1

)η↓(σpN
)

=
C

ΩN/4

∑
p

spψ(rp1
σp1

, rp2
σp2

)ψ(rp3
σp3

, rp4
σp4

) . . . ψ(rpN−1
σpN−1

, rpN
σpN

)

⇒ ⟨r1σ1, r2σ2, . . . rNσN |ΦN ⟩ ∝ A ·
(
ψ(r1σ1, r2σ2)ψ(r3σ3, r4σ4) . . . ψ(rN−1σN−1, rNσN )

)
(b) Show that it is possible to express Eq. (2) in terms of antisymmetric wave functions:

⟨r1σ1, · · · , rNσN |ΦN ⟩ ∼ A ·
(
ψa(r1σ1, r2σ2)ψa(r3σ3, r4σ4) · · ·ψa(rN−1σN−1, rNσN )

)
where the antisymmetric two-particle wave function ψa is defined by

ψa(rσ, r
′σ′) =

1√
2

(
η↑(σ)η↓(σ

′)− η↓(σ)η↑(σ
′)
)
φ(r − r′)

[2 points]

Solution: We can antisymmetrise the two-particle wave function. Indeed, using

A · f(· · · , riσi, rjσj , · · · ) = −A · f(· · · , rjσj , riσi, · · · )

we have

A · f(· · · , riσi, rjσj , · · · ) =
1

2

(
A · f(· · · , riσi, rjσj , · · · )−A · f(· · · , rjσj , riσi, · · · )

)
= A · 1

2

(
f(· · · , riσi, rjσj , · · · )− f(· · · , rjσj , riσi, · · · )

)
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Hence, for particles 1 and 2,

⟨r1σ1, · · · , rNσN |ΦN ⟩ ∝ A ·
(
ψ(r1σ1, r2σ2)ψ(r3σ3, r4σ4) · · ·

)
=

1

2
A ·
(
ψ(r1σ1, r2σ2)ψ(r3σ3, r4σ4) · · ·ψ(rN−1σN−1, rNσN )

−ψ(r2σ2, r1σ1)ψ(r3σ3, r4σ4) · · ·ψ(rN−1σN−1, rNσN )
)

=
1√
2
A ·
(ψ(r1σ1, r2σ2)− ψ(r2σ2, r1σ1)√

2

×ψ(r3σ3, r4σ4) · · ·ψ(rN−1σN−1, rNσN )
)

By performing the same operation for the pairs of particles (3, 4), (5, 6), · · · , (N−1, N), we obtain

⟨r1σ1, · · · , rNσN |ΦN ⟩ ∝ A ·
(
ψa(r1σ1, r2σ2)ψa(r3σ3, r4σ4) · · ·ψa(rN−1σN−1, rNσN )

)
with the antisymmetrised two-particle wave function

ψa(rσ, r
′σ′) =

ψ(rσ, r′σ′)− ψ(r′σ′, rσ)√
2

=
1√
2

φ(r − r′)η↑(σ)η↓(σ
′)− φ(r′ − r)︸ ︷︷ ︸

=φ(r−r′)

η↑(σ
′)η↓(σ)


=

1√
2
φ(r − r′)

(
η↑(σ)η↓(σ

′)− η↓(σ)η↑(σ
′)
)

(c) The coherence length ℓc of the pair is then calculated from the average radius ρ of the wave
function ψ

ℓ2c ≃ ρ2 =
⟨ψ|R̂2|ψ⟩
⟨ψ|ψ⟩

=

∫
φ∗(R)R2φ(R)d3R∫
φ∗(R)φ(R)d3R

(7)

1. Show that ρ2 can be written as:

ρ2 =

∫
d3k(∇kgk)

2∫
d3kg2k

(8)

[3 points]

Hint: when you integrate over a sphere of radius |k| → ∞, you may need to approximate

Ek ≈ ξk

(
1 + ∆2

2ξ2k

)
.

Solution: Switching to the continuous limit for k:∫
φ∗(R)R2φ(R)d3R =

Ω

(2π)6

∫
d3R

∫
d3kgkRe

ik·R ·
∫
d3pgpRe

−ip·R

=
Ω

(2π)6

∫
d3R

∫
d3kgk∇ke

ik·R ·
∫
d3pgp∇pe

−ip·R

However, ∇k(f(k)g(k)) = f(k)∇kg(k) + g(k)∇kf(k). Therefore we have:∫
d3kgk∇ke

ik·R =

∫
d3k∇k

(
gke

ik·R)− ∫ d3k(∇kgk)e
ik·R

4
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We then use Gauss’s theorem (the divergence theorem) on the first term∫
d3k∇k

(
gke

ik·R) =

∫
dSgke

ik·Rer

We need to integrate over a sphere of radius |k| → ∞. Yet, gk → 0 when ξk > ξkF
+ωD. More

precisely, recall the expression of gk, uk and vk (recall that ξk = k2

2m − ϵF ). You see that for

very large k, Ek ≃ ξk + 1
2
∆2

ξk
. By expanding, one gets that

gk =
vk
uk

≃ m∆

k2
(9)

Since the surface dS ≃ 4πk2, we are essentially integrating eik·R on the sphere, which gives
zero.

We thus have ∫
d3k∇k

(
gke

ik·R) = 0

and ∫
φ∗(R)R2φ(R)d3R =

Ω

(2π)6

∫
d3R

∫
d3kgkRe

ik·R ·
∫
d3pgpRe

−ip·R

=
Ω

(2π)6

∫
d3R

∫
d3k(∇kgk)e

ik·R ·
∫
d3p(∇pgp)e

−ip·R

=
Ω

(2π)6

∫
d3k

∫
d3p(∇kgk) · (∇pgp)

∫
ei(k−p)·Rd3R︸ ︷︷ ︸
=(2π)3δk,p

=
Ω

(2π)3

∫
d3k(∇kgk)

2

For the denominator,∫
φ∗(R)φ(R)d3R ≃ Ω

(2π)6

∫
d3k

∫
d3pgkgp

∫
d3Rei(k−p)·R

=
Ω

(2π)3

∫
d3k

∫
d3pgkgpδ(k − p)

=
Ω

(2π)3

∫
d3kg2k

Therefore, finally we got the required expression.

2. Then write it as

ρ2 =

(
dξk
dk

)2
ξk=0

∫ ωD

0
dξk

(
dgk
dξk

)2
∫ ωD

0
g2kdξk

. (10)

[3 points]

Hint: For Cooper pairs in the presence of a a Fermi sea, when ϵk < ϵF , gk can be seen as
constant and its gradient is zero.

Solution: Again, let’s start from the numerator, and use the fact that gk behaves as

• We consider a set of Cooper pairs in the presence of a a Fermi sea. Therefore, for ϵk < ϵF ,
gk is constant and its gradient it zero.

• ∇kgk only depends on |k|, so that we can switch to spherical coordinates and integrate
over the angular variables.
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Then we have ∫
φ∗(R)R2φ(R)d3R =

Ω

2π2

∫ k0

kF

dkk2
(
dgk
dk

)2

≃ Ω

2π2
k2F

∫ k0

kF

dk

(
dgk
dk

)2

=
Ω

2π2
k2F

∫ ωD

0

dξk

(
dk

dξk

)(
dξk
dk

dgk
dξk

)2

≃ Ω

2π2
k2F

(
dξk
dk

)
ξk=0

∫ ωD

0

dξk

(
dgk
dξk

)2

For the denominator,∫
φ∗(R)φ(R)d3R ≃ Ω

2π2
k2F

∫ k0

kF

dkg2k

≃ Ω

2π2
k2F

(
dk

dξk

)
ξk=0

∫ ωD

0

g2kdξk

3. Calculate the integral, then using the weak-coupling approximation (∆ ≪ ωD) as well as(
dξk
dk

)
ξk=0

= ℏvF (11)

infer that

ℓc ∼
ℏvF
∆

. (12)

[3 points]

Solution: Remember that

gk =

√
Ek − ξk
Ek + ξk

=

√
Ek − ξk
Ek + ξk

√
Ek − ξk
Ek − ξk

=
Ek − ξk√
E2

k − ξ2k
=

1

∆
(Ek − ξk)

so we have (
dgk
dξk

)2

=
1

∆2

(
d

dξk
(E − ξk)

)2

=
1

∆2

(
d

dξk

(√
ξ2k +∆2 − ξk

))2

=
1

∆2

(
1 +

ξ2k
ξ2k +∆2

− 2
ξk√

ξ2k +∆2

)

and ∫ ωD

0

dξk

(
dgk
dξk

)2

=
1

∆2

[
ξk + (ξk −∆arctan

ξk
∆

)− 2
√
ξ2k +∆2

]ωD

0

=
1

∆2

(
2ωD −∆arctan

ωD

∆
+ 2
√
ω2
D +∆2 + 2∆

)
.

6
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But ∆ = 2ωDe
−1

V gF (see course), so that in the weak coupling limit ∆ ≪ ωD ⇒
√
ω2
D +∆2 ≃

ωD and ∫ ωD

0

dξk

(
dgk
dξk

)2

≃
2− π

2

∆

Thus we have, with
(

dξk
dk

)
ξk=0

= ℏvF , and

∫
φ∗(R)R2φ(R)d3R =

Ωk2FℏvF
π2∆

(
1− π

4

)
.

Similarly, we have∫
φ∗(R)φ(R)d3R ≃ Ω

2π2
k2F

∫ k0

kF

dkg2k

≃ Ω

2π2
k2F

(
dk

dξk

)
ξk=0

∫ ωD

0

g2kdξk

=
Ω

2π2

k2F
ℏvF

∫ ωD

0

(√
∆2 + ξ2k − ξk

∆

)2

dξk

=
Ω

2π2

k2F
ℏvF∆2

∫ ωD

0

(
∆2 + 2ξ2k − 2ξk

√
∆2 + ξ2k

)
dξk

=
Ω

2π2

k2F
ℏvF∆2

[
ξk∆

2 +
2

3
ξ3k − 2

3
(∆2 + ξ2k)

√
∆2 + ξ2k

]ωD

0

=
Ω

2π2

k2F
ℏvF∆2

(
ωD∆2 +

2

3
ω3
D − 2

3
(∆2 + ω2

D)
√
∆2 + ω2

D +
2

3
∆3

)

But ∆ ≪ ωD ⇒
√
1 +

(
∆
ωD

)2
≃ 1 + ∆2/(2ω2

D), and we get

∫
φ∗(R)φ(R)d3R ≃ Ωk2F∆

3π2ℏvF
.

Finally,

ℓ2c ≃
∫
φ∗(R)R2φ(R)d3R∫
φ∗(R)φ(R)d3R

∼ ℏ2v2F
∆2

Usually, ℓc ∼ 103 Å, which should be compared with the lattice constant ∼1Å (∼ distance between
the centers of mass of the pairs). Thereby, the spatial extent of the Cooper pairs is considerably
larger than the distance between their centers of mass, and we cannot assume that they are
independent.

Here are some useful integrals:∫
1

x2 + a2
dx =

1

a
arctan

x

a
et

∫
x2

x2 + a2
dx = x− a arctan

x

a∫
x√

x2 + a2
dx =

√
x2 + a2 et

∫
x
√
x2 + a2dx =

1

3
(x2 + a2)

√
x2 + a2

7
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Properties of Hubbard Hamiltonian

Consider the one-dimensional Hubbard model, whose Hamiltonian is given by:

H = −t
∑

⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓,

where c†iσ and ciσ are the creation and annihilation operators for an electron at site i with spin σ,

niσ = c†iσciσ is the number operator for electrons at site i with spin σ, t is the hopping parameter,
U is the on-site interaction energy, and ⟨i, j⟩ denotes nearest-neighbor sites.

(a) Prove that the total number operator

N̂ =
∑
i

ni, where ni = ni↑ + ni↓,

commutes with the Hamiltonian, i.e., show that:

[N̂ ,H] = 0.

[2 points]

Solution: To show that [N̂ ,H] = 0, we compute the commutator explicitly. The total
particle number operator is given by:

N̂ =
∑
j

nj =
∑
j

(
c†j↑cj↑ + c†j↓cj↓

)
,

and the Hamiltonian H has two terms: the hopping term and the interaction term:

H = −t
∑

⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓.

The hopping term is:

Hhop = −t
∑

⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
.

The commutator of N̂ with Hhop is:

[N̂ ,Hhop] = −t
∑

⟨i,j⟩,σ

(
[N̂ , c†iσcjσ] + [N̂ , c†jσciσ]

)
.

Using the commutator relations:

[N̂ , ciσ] = −ciσ, [N̂ , c†iσ] = c†iσ,

we find:
[N̂ , c†iσcjσ] = c†iσcjσ − c†iσcjσ = 0,

and similarly:
[N̂ , c†jσciσ] = 0.

Thus:
[N̂ ,Hhop] = 0.

The interaction term is:
Hint = U

∑
i

ni↑ni↓.

8
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The commutator of N̂ with Hint is:

[N̂ ,Hint] = U
∑
i

[N̂ , ni↑ni↓].

Since N̂ commutes with ni↑ and ni↓, we have:

[N̂ , ni↑ni↓] = 0.

Thus:
[N̂ ,Hint] = 0.

Since [N̂ ,Hhop] = 0 and [N̂ ,Hint] = 0, we conclude:

[N̂ ,H] = 0.

This shows that the total particle number N̂ is conserved under the Hamiltonian H.

(b) N̂ is a conserved quantity. Write the local conservation equation for particle number. Using
the Heisenberg equation of motion, find the expression for the corresponding current? [1
point]

Solution:

The local conservation equation for particle number is:

dni
dt

+
∑
j

Jij = 0,

where Jij is the current from site j to site i.

Using the Heisenberg equation of motion:

dni

dt
=
i

ℏ
[H,ni],

we compute the commutator [H,ni] with the Hamiltonian:

H = −t
∑

⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓.

The commutator [H,ni] receives contributions only from the hopping term:

Hhop = −t
∑

⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
.

Expand the commutator:

[Hhop, ni] = −t
∑

⟨i,j⟩,σ

(
[c†iσcjσ, ni] + [c†jσciσ, ni]

)
.

For ni =
∑

σ c
†
iσciσ, the commutator with the hopping terms evaluates to:

[c†iσcjσ, ni] = −c†iσcjσ, [c†jσciσ, ni] = c†jσciσ.

Thus:
[Hhop, ni] = it

∑
⟨i,j⟩,σ

(
c†jσciσ − c†iσcjσ

)
.

9
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Substitute this result into the Heisenberg equation of motion:

dni
dt

= t
∑

⟨i,j⟩,σ

(
c†jσciσ − c†iσcjσ

)
.

The current Jij is then:

Jij = it
∑
σ

(
c†iσcjσ − c†jσciσ

)
.

(c) It is easy to see that the Hamiltonian is invariant under the transformations:

cjσ → e−iθcjσ, c†jσ → eiθc†jσ.

Such a symmetry is called a global U(1) symmetry. Given the unitary operator:

U = eiθN̂ ,

compute the transformed operators

UcjσU
† and Uc†jσU

†,

and show that they turn out to be e−iθcjσ and eiθc†jσ, respectively. [3 points]

Hint: You may use the Baker–Campbell–Hausdorff formula.

Solution:

Using the Baker-Campbell-Hausdorff formula:

UcjσU
† = eiθN̂cjσe

−iθN̂ ,

we expand the transformation as:

UcjσU
† = cjσ + iθ[N̂ , cjσ] +

(iθ)2

2!
[N̂ , [N̂ , cjσ]] + · · · .

From the commutator relations, we know:

[N̂ , cjσ] = −cjσ.

Substituting this into the expansion:

[N̂ , [N̂ , cjσ]] = [N̂ ,−cjσ] = −[N̂ , cjσ] = cjσ.

The pattern alternates as:

[N̂ , [N̂ , [N̂ , cjσ]]] = −cjσ, and so on.

Thus, the series sums to:

UcjσU
† = cjσ

(
1− iθ +

(−iθ)2

2!
− (−iθ)3

3!
+ · · ·

)
.

The expression in parentheses is the Taylor expansion of e−iθ. Therefore:

UcjσU
† = e−iθcjσ.
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Similarly, for c†jσ, we compute:

Uc†jσU
† = eiθN̂c†jσe

−iθN̂ ,

and expand:

Uc†jσU
† = c†jσ + iθ[N̂ , c†jσ] +

(iθ)2

2!
[N̂ , [N̂ , c†jσ]] + · · · .

Using the commutator:
[N̂ , c†jσ] = c†jσ,

the series sums to:

Uc†jσU
† = c†jσ

(
1 + iθ +

(iθ)2

2!
+

(iθ)3

3!
+ · · ·

)
.

The expression in parentheses is the Taylor expansion of eiθ. Therefore:

Uc†jσU
† = eiθc†jσ.

(d) (Optional) We have shown in the lecture that the effective Hamiltonian for the Hubbard
model at half-filling can be written as

− t
2

U

∑
i(j),σ′σ′′

c†iσ′cj,σ′nj,σnj,−σc
†
j,σ′′ci,σ′′ .

(See Mila’s lecture notes, Section 2.3).

In the lecture, we performed explicit calculations for the case

σ′ = σ′′ = σ.

Consider the other three cases, i.e.

σ′ = σ′′ = −σ,

σ′′ = −σ′ = σ

and
σ′′ = −σ′ = −σ,

and simplify the effective Hamiltonian (show detailed calculations). [3 points]

Solution:

The solution is straightforward once you have determined that

cj,σnj,σc
†
j,σ = (1− nj,σ),

nj,σ + nj,−σ = 1

and
cj,σnj,σ = cj,σ.
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